Mixing Dirichlet Topic Models and Word Embeddings to Make Ida2vec

Christopher E. Moody

Saarland University Seminar: Embeddings for NLP and IR Lecturer: Cristina España i Bonet Nora Graichen and Insa Kröger July 3rd, 2019

Table of Contents

- 1. Motivation (Nora & Insa)
- 2. LDA and word2vec (Nora)
- 3. Model
 - a. Architecture (Nora)
 - b. Loss Function (Insa)
 - c. Data and Results (Insa)
- 4. Conclusion (Nora & Insa)

What is Ida2vec?

word embeddings:

 \rightarrow word2vec,

skip-gram method

topic models:

 \rightarrow LDA

Latent Dirichlet Allocation

What is Ida2vec?

word embeddings:

 \rightarrow word2vec,

skip-gram method

topic models:

 \rightarrow LDA

Latent Dirichlet Allocation

Ida2vec:

 \rightarrow topic model,

builds document representations on top of word embeddings

What is the general goal of topic models?

produce interpretable document representations, given a collection of unlabelled documents

 \rightarrow discover topics or structure

document Farming-X:

- 40% topic "vegetables"
- 40% topic "economy"
- 20% topic "water culture"

Why is Ida2vec useful?

Why is Ida2vec useful?

word vectors → revealing relationships between words

document vectors → revealing topical distributions over documents

Why is Ida2vec useful?

word vectors

 \rightarrow revealing relationships between words

document vectors → revealing topical distributions over documents combination

Why is Ida2vec useful?

1. Global document themes with local word patterns

Why is Ida2vec useful?

word vectors
document vectors

→ revealing relationships between
→ revealing topical distributions over
documents

words
documents

- 1. Global document themes with local word patterns
- 2. Dense word vectors but sparse document vectors

Why is Ida2vec useful?

word vectors

 \rightarrow revealing relationships between words

document vectors → revealing topical distributions over documents ation

- 1. Global document themes with local word patterns
- 2. Dense word vectors but sparse document vectors
 - 3. Mixture of topic models for interpretability

Table of Contents

- 1. Motivation (Nora & Insa)
- 2. LDA and word2vec (Nora)
- 3. Model
 - a. Architecture (Nora)
 - b. Loss Function (Insa)
 - c. Data and Results (Insa)
- 4. Conclusion (Nora & Insa)

Latent Dirichlet Allocation - LDA

- probabilistic topic model
 - \rightarrow find the structure or topics in unlabelled document collection
- takes advantage of global (document level) information for predicting words
- assumption: word usage is correlated with topic occurrence
- input: number of topics that occur in the collection, manually assign a distinct 'topic' to the different topic vector

LDA and word2vec

sparse

0%0%0%0%0% ... 0%, 9%, **78%,** 11%]

LDA and word2vec

LDA and word2vec

LDA	word2vec	15 dense
document representations bag-of-words model	word representations	
+ global + generally sparse	+ local - dense	-1.0 -1.5 -2.0 -2.5 -3.0
long distance dependencies	captures rich linguistic r king – man + woman = q	relationship Jueen

0%0%0%0%0% ... 0%, 9%, **78%**, 11%]

[-0.75, -1.25, -0.55, -0.27, -0.94, 0.44, 0.05, 0.31 ... -0.12, +2.2]

Table of Contents

- 1. Motivation (Nora & Insa)
- 2. LDA and word2vec (Nora)
- 3. Model
 - a. Architecture (Nora)
 - b. Loss Function (Insa)
 - c. Data and Results (Insa)
- 4. Conclusion (Nora & Insa)

Ida2vec - architecture: mix local words with global interpretable document vectors

Ida2vec - architecture **Document** weight #topics Lufthansa German airline and when is a Skip grams from Document proportion sentences # #topics German 26% Word vector **Topic** matrix **Document** vector #topics #hidden units #hidden units #hidden -19 -1.9 $\vec{c_j} = \vec{w_j} + \vec{d_j}$ units 'specialised' word vectors: Context vector #hidden units -2.6 -1.3 local inter-word relationships + document-wide relationships rne Negative sampling loss negative sampling L^{neg} Lufthansa airline is a German and when

Table of Contents

- 1. Motivation (Nora & Insa)
- 2. LDA and word2vec (Nora)
- 3. Model
 - a. Architecture (Nora)
 - b. Loss Function (Insa)
 - c. Data and Results (Insa)
- 4. Conclusion (Nora & Insa)

- simultaneous global and local prediction
- local features \rightarrow improve predicting neighbouring words
- global features \rightarrow capture themes across sentences and documents

$$L = L^d + \sum_{ij} L_{ij}^{neg}$$

LDA loss

$$L = \underline{L^d} + \sum_{ij} L_{ij}^{neg}$$

$$L^d = \lambda \sum_{jk} (\alpha - 1) \log p_{jk}$$

Dirichlet likelihood loss likelihood of *document j* in *topic k*

$$L = \underline{L^d} + \sum_{ij} L_{ij}^{neg}$$

$$L^d = \lambda \sum_{jk} (\alpha - 1) \log p_{jk}$$

document weights

weights are optimized with respect to Dirichlet likelihood

$$L = \underline{L^d} + \sum_{ij} L_{ij}^{neg}$$

$$L^d = \lambda \sum_{jk} (\alpha - 1) \log p_{jk}$$

document proportions parameter

 $\alpha > 1 \rightarrow$ homogenous

 $\alpha < 1 \rightarrow \text{sparse}$

$$L = \underline{L^d} + \sum_{ij} L_{ij}^{neg}$$

$$L^d = \lambda \sum_{jk} (\alpha - 1) \log p_{jk}$$

document proportions parameter

 $\alpha > 1 \rightarrow$ homogenous

 $\alpha < 1 \rightarrow \text{sparse}$

 $\alpha = n^{-1} \rightarrow$ sparse memberships over *n* topics

$$L = \underline{L^d} + \sum_{ij} L_{ij}^{neg}$$

$$L^d = \lambda \sum_{jk} (\alpha - 1) \log p_{jk}$$

tuning parameter λ adjusts relevance of given word in topic

$$L = L^d + \sum_{ij} L_{ij}^{neg}$$

word2vec loss

$$L = L^d + \sum_{ij} L_{ij}^{neg}$$

$$L_{ij}^{neg} = \log \, \sigma(\vec{c_j} \cdot \vec{w_i}) + \sum_{l=0}^n \log \, \sigma(-\vec{c_j} \cdot \vec{w_l})$$

context vectors are combination of word and document vectors

 $\vec{c_j} = \vec{w_j} + \vec{d_j}$

$$L = L^d + \sum_{ij} L_{ij}^{neg}$$

$$\vec{c_j} = \vec{w_j} + \vec{d_j}$$

$$L_{ij}^{neg} = \log \sigma(\vec{c_j} \cdot \vec{w_i}) + \sum_{l=0}^n \log \sigma(-\vec{c_j} \cdot \vec{w_l})$$

sum of weighted topic vectors

$$\vec{d_j} = a_{j0} \cdot \vec{t_0} + a_{j1} \cdot \vec{t_1} + \dots$$

$$\vec{c_j} = \vec{w_j} + \vec{d_j}$$

 $\vec{d_j} = a_{j0} \cdot \vec{t_0} + a_{j1} \cdot \vec{t_1} + \dots$

$$L_{ij}^{neg} = \log \, \sigma(\vec{c_j} \cdot \vec{w_i}) + \sum_{l=0}^n \log \, \sigma(-\vec{c_j} \cdot \vec{w_l})$$

randomly sampled negative words and contexts

Table of Contents

- 1. Motivation (Nora & Insa)
- 2. LDA and word2vec (Nora)
- 3. Model
 - a. Architecture (Nora)
 - b. Loss Function (Insa)
 - c. Data and Results (Insa)
- 4. Conclusion (Nora & Insa)

Data - Twenty Newsgroups

- Twenty Newsgroups:
 - around 9'000 unique tokens in 11'300 documents
 - initialized with pretrained vectors
 - n = 20 topics, negative sampling $\beta = 0.75$

# of topics	β	Topic Coherences
20	0.75	0.567
30	0.75	0.555
40	0.75	0.553
50	0.75	0.547
20	1.00	0.563
30	1.00	0.564
40	1.00	0.552
50	1.00	0.558

Average topic coherences. Topic coherence has been demonstrated to correlate with human evaluations of topic models (Röder et al., 2015). The number of topics chosen is given, as well as the negative sampling exponent parameter β .

Data - Twenty Newsgroups

- Twenty Newsgroups:
 - around 9'000 unique tokens in 11'300 documents
 - initialized with pretrained vectors
 - n = 20 topics, negative sampling $\beta = 0.75$

Topic Label	"Space"	"Encryption"	"X Windows"	"Middle East"
Top tokens	astronomical	encryption	mydisplay	Armenian
	Astronomy	wiretap	xlib	Lebanese
	satellite	encrypt	window	Muslim
	planetary	escrow	cursor	Turk
	telescope	Clipper	pixmap	sy
Topic Coherence	0.712	0.675	0.472	0.615

# of topics	ρ	Topic Conerences
20	0.75	0.567
30	0.75	0.555
40	0.75	0.553
50	0.75	0.547
20	1.00	0.563
30	1.00	0.564
40	1.00	0.552
50	1.00	0.558
<u></u>		N

. . .

Average topic coherences. Topic coherence has been demonstrated to correlate with human evaluations of topic models (Röder et al., 2015). The number of topics chosen is given, as well as the negative sampling exponent parameter β .

0

Topic coherence discovered by Ida2vec in the Twenty Newsgroups dataset. first row: inferred topic label, below: tokens with highest similarity to the topic Corpus contains corresponding newsgroups: sci.space, sci.crypt, comp.windows.x and talk.politics.mideast.

- Hacker News Comments corpus:
 - around 110 thousand unique tokens in 66 thousand documents
 - no pretrained vectors but random initialization
 - 256 hidden units
 - n = 40 topics, negative sampling power $\beta = 0.75$

"Housing Issues"	"Internet Portals"	"Bitcoin"	"Compensation"	"Gadget Hardware"
more housing	DDG.	btc	current salary	the Surface Pro
basic income	Bing	bitcoins	more equity	HDMI
new housing	Google+	Mt. Gox	vesting	glossy screens
house prices	DDG	MtGox	equity	Mac Pro
short-term rentals	iGoogle	Gox	vesting schedule	Thunderbolt

Topics discovered by Ida2vec in the Hacker News comments dataset. first row: inferred topic label Tokens formed from noun phrases to capture the unique vocabulary of this specialized corpus

"Housing Issues"	"Internet Portals"	"Bitcoin"	"Compensation"	"Gadget Hardware"
more housing	DDG.	btc	current salary	the Surface Pro
basic income	Bing	bitcoins	more equity	HDMI
new housing	Google+	Mt. Gox	vesting	glossy screens
house prices	DDG	MtGox	equity	Mac Pro
short-term rentals	iGoogle	Gox	vesting schedule	Thunderbolt

Topics discovered by Ida2vec in the HNC dataset. first row: inferred topic label. Tokens formed from noun phrases to capture the unique vocabulary of this specialized corpus

Artificial sweeteners	Black holes	Comic Sans	Functional Programming	San Francisco
glucose	particles	typeface	FP	New York
fructose	consciousness	Arial	Haskell	Palo Alto
HFCS	galaxies	Helvetica	OOP	NYC
sugars	quantum mechanics	Times New Roman	functional languages	New York City
sugar	universe	font	monads	SF
Soylent	dark matter	new logo	Lisp	Mountain View
paleo diet	Big Bang	Anonymous Pro	Clojure	Seattle
diet	planets	Baskerville	category theory	Los Angeles
carbohydrates	entanglement	serif font	00	Boston

Given an example token in the top row, the most similar words available in the HNC corpus are reported

"Housing Issues"	"Internet Portals"	"Bitcoin"	"Compensation"	"Gadget Hardware"
more housing	DDG.	btc	current salary	the Surface Pro
basic income	Bing	bitcoins	more equity	HDMI
new housing	Google+	Mt. Gox	vesting	glossy screens
house prices	DDG	MtGox	equity	Mac Pro
short-term rentals	iGoogle	Gox	vesting schedule	Thunderbolt

Topics discovered by Ida2vec in the HNC dataset. first row: inferred topic label. Tokens formed from noun phrases to capture the unique vocabulary of this specialized corpus

Query	Result
California + technology	Silicon Valley
digital + currency	Bitcoin
Javascript - browser + server	Node.js
Mark Zuckerberg - Facebook + Amazon	Jeff Bezos
NLP - text + image	computer vision
Snowden - United States + Sweden	Assange
Surface Pro - Microsoft + Amazon	Kindle

linear relationships in the HNC dataset. first column: example input query second column: token most similar to the input

Artificial sweeteners	Black holes	Comic Sans	Functional Programming	San Francisco
glucose	particles	typeface	FP	New York
fructose	consciousness	Arial	Haskell	Palo Alto
HFCS	galaxies	Helvetica	OOP	NYC
sugars	quantum mechanics	Times New Roman	functional languages	New York City
sugar	universe	font	monads	SF
Soylent	dark matter	new logo	Lisp	Mountain View
paleo diet	Big Bang	Anonymous Pro	Clojure	Seattle
diet	planets	Baskerville	category theory	Los Angeles
carbohydrates	entanglement	serif font	00	Boston

Given an example **token** in the top row, the **most similar words** available in the HNC corpus are reported

Table of Contents

- 1. Motivation (Nora & Insa)
- 2. LDA and word2vec (Nora)
- 3. Model
 - a. Architecture (Nora)
 - b. Loss Function (Insa)
 - c. Data and Results (Insa)
- 4. Conclusion (Nora & Insa)

Conclusion Ida2vec

- more than just a topic model
- captures semantic meaning of words

 \rightarrow word, topic, document vectors are trained and embedded in a common representation space

- "human interpretable"
- sparse and interpretable document-to-topic proportions in LDA style
- includes more contexts and features than LDA

 \rightarrow obtain 'specialised' word vectors

Conclusion Ida2vec

The goal: Use all of this context to learn interpretable topics.

Weak points

- very experimental
- no real baseline comparison to standalone word2vec and LDA
- heavily computationally expensive \rightarrow GPU's are needed
- word vector nuances are compressed
 → syntactical / semantical information may get lost
- (some) tables do not contain metrics
 → which scales of similarity?

Weak points: very specific!

If you want...

human-interpretable doc topics, use **LDA**.

machine-useable word-level features, use word2vec.

topics over user / doc / region / etc. features, use **Ida2vec**. (and you have a GPU)

Strong points

- good documentation for starting
- may reveal trends that only word vectors cannot capture
- easily human interpretable (not just machine readable)
- sparks experimentation and new approaches

Illustration

Jupyter Notebook for illustration purposes

https://nbviewer.jupyter.org/github/cemoody/lda2vec/blob/master/examples/twe nty_newsgroups/lda2vec/lda2vec.ipynb#topic=0&lambda=0.06&term= Questions?

References

- Christopher E. Moody. (2016)
 - Mixing Dirichlet Topic Models and Word Embeddings to Make Ida2vec.
- Introducing our Hybrid Ida2vec Algorithm: <u>https://multithreaded.stitchfix.com/blog/2016/05/27/Ida2vec</u>
- Chris Moody introduces Ida2vec:

https://www.youtube.com/watch?v=eHcBeVnAiD4